

NIPPON STEEL Stainless Steel Corporation

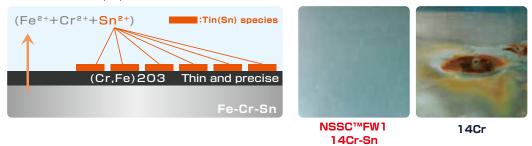
So addition/Decoupes sering/High numity for

Sn addition/Resource saving/High-purity ferritic stainless steel

EXPERIENCE KNOWLEDGE INNOVATION

Cr & Ni 35% Saving

The world's first Sn added and Resource saving High-purity ferritic stainless steel



Adding Tin(Sn)

By adding a small amount of Tin, the FW series shows excellent corrosion resistance even in a saltwater environment

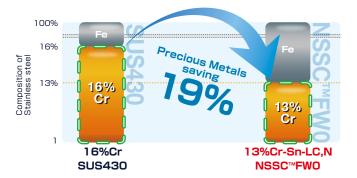
by adsorbing Tin chemical species on the surface.

Low Cr+added Tin(Sn)

Comparison between 14Cr-Sn (left) and 14Cr (right) (Suppresses the rusting by adding Sn)

Reducing precious metals by up to 35%!

NSSC FW[™] series are nickel- and molybdenum-free, and has significantly reduced chromium!


FW1 (14Cr-Sn-LC,N)

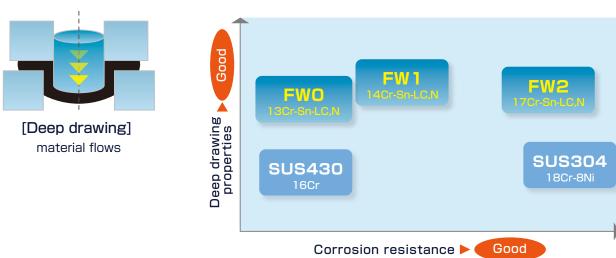
Compared with SUS430LX, FW1 achieves 23% reduction in precious metals!

100% 18% Precious Metals 14% 118% Cr 18% Cr 14% Cr 14% Cr SUS430LX NSSC**FW1

FWO (13Cr-Sn-LC,N)

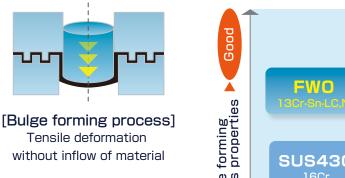
Compared with SUS430, FWO achieves 19% reduction in precious metals!

High workability


NSSC $\mathsf{FW}^{\scriptscriptstyle\mathsf{TM}}$ has the highest level of workability among the ferritic grades.

By selecting the appropriate process conditions,

it is possible to perform equivalent level of forming processing as of SUS304.


Deep drawing properties

A processing method in which a material is forced into a die (concave mold) using a punch (convex mold) to form various shapes.

Bulging process properties

A processing method that suppresses the inflow of material using beads(for example), and transcription the shape of the punch (convex mold) to the material for forming. The surface area increases as the processing progresses, but the thickness decreases.

DRMA

Processing properties (thickness 0.6mm)

Maintenance after processing can be reduced as a results of less ridging.

SUS430LX

NSSC™FW1

(Single cold rolling, drawing ratio: 2.0)

Multi-step deep drawing is possible without cracking, and does not occur any season cracking.

SUS304 (Single cold rolling) Blank dia: ϕ 80mm, Lubricant: JW#122

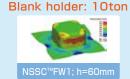
Punch dia (mm): 1st ϕ 40 \rightarrow 2nd ϕ 35 \rightarrow 3rd ϕ 30 \rightarrow 4th ϕ 25

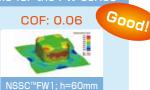
	Deep drawin	g properties	Bulging proc	ess properties
	average r-value	LDR	n-value	hydraulic bulge
	average i-value	LUIT	H-Value	Height (mm)
NSSC™FW1	1.7	2.3	0.22	31.5
NSSC™FW2	1.7	2.3	0.24	30.5
NSSC™FW0 (thickness 0.5mm)	1.6	2.2	0.25	_
SUS430	1.0	2.0	0.16	27.0
SUS304	1.1	2.1	0.42	40.5

Example of replacement solution from SUS304 to FW series

Simulation result

Punch:

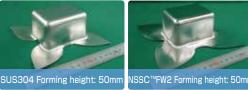

240×240mm 100×100mm, Corner r20mm, rp10mm

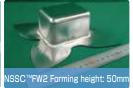

COF:

Die: 103×103mm.rd5mm 0.10, thickness:0.8mm Blank holding pressure: 20ton

NSSC SOLUTION

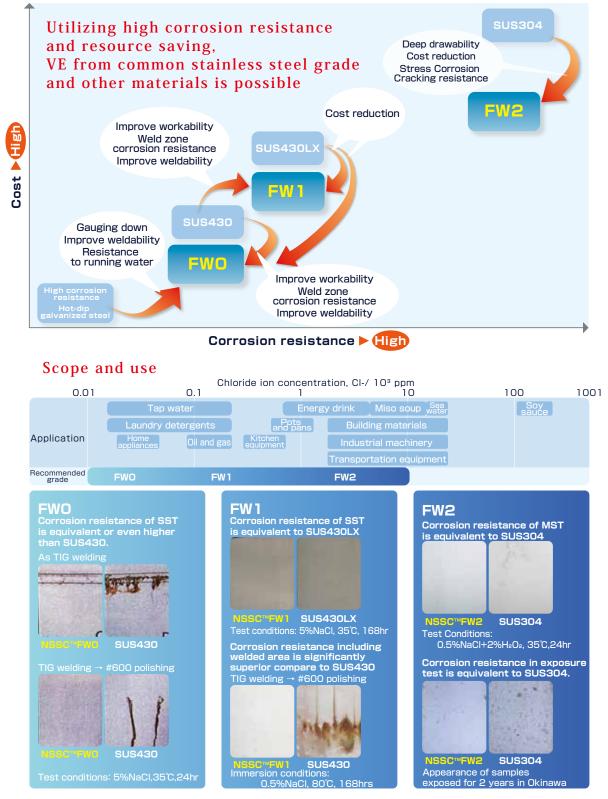
Workability comparison under conditions suitable for the FW series




Blank size: SUS304/150×150mm

NSSC™FW2/175×175mm

Thickness: O.6mmt,blank holding pressure:500kN 82mm×62mm,rC/9mm,rd/5mm Die: Punch: 80mm×60mm,rC/8mm,rp/8mm


Lubricant: Die surface/PVC film,Punch surface/#122wax

05 HIGH CORROSION RESISTANCE

High corrosion resistance

Technical data

FW2(17Cr-Sn-LC,N)

Specification

Mechanical properties

	0.2% proof stress (N/mm²)	tensile strength (N/mm²)	elongation (%)	Hardness (HV)
	≧205	≧390	≧25	≦200
Representative value	279	463	32	144

Surface Finish: No.2B, Thickness: 0.6mm

reference				
SUS304	297	675	61	173

Physical properties

Measured results

ref	fer	en	ice
	٠.	٥.	

Item	Unit	value	SUS304
Density	kg/mm/m² (room temperature)	7.70	7.93
Specific electrical resistivity	10-8Ωm (room temperature)	54	72
Specific heat	kJ/kg/℃ (0~100℃)	0.48	0.50
Heat conductivity	W/m/℃ (100℃)	25.6	16.3
Heat expansion coefficient	10-6/℃ (room temperature to 100℃)	10.8	16.9
Longitudinal elastic modulus	kN/mm²	211	193

FW1(14Cr-Sn-LC,N)

Specification

Mechanical properties

	0.2% proof stress (N/mm²)	tensile strength (N/mm²)	elongation (%)	Hardness (HV)
Specification	≧175	≧360	≧28	≦180
Representative value	260	420	35	130

Surface Finish: No.2B, Thickness: 0.6mm

reference

	SUS430LX	296	436	32	144
--	----------	-----	-----	----	-----

Physical properties

Measured results

reference	

Item	Unit	value	SUS430LX
Density	kg/mm/m² (room temperature)	7.70	7.70
Specific electrical resistivity	10-8Ωm (room temperature)	51	60
Specific heat	kJ/kg/℃ (0~100℃)	0.49	0.46
Heat conductivity	W/m/℃ (100℃)	26.6	26.4
Heat expansion coefficient	10-6/C (room temperature to $100C$)	10.8	10.4
Longitudinal elastic modulus	kN/mm²	217	200

FWO(13Cr-Sn-LC,N)

Specification

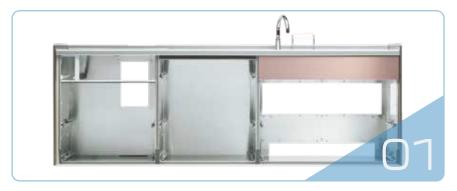
Mechanical properties

	0.2% proof stress (N/mm²)	tensile strength (N/mm²)	elongation (%)	Hardness (HV)
	≧175	≧360	≧28	≦160
Representative value	253	449	32	144

Surface Finish: No.2B, Thickness: 0.5mm

reference				
SUS430	308	516	26	155

Physical properties


Measured results

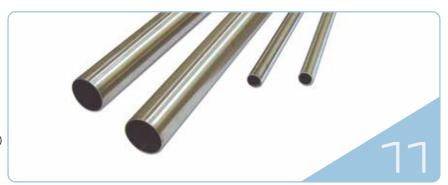
reference

Item	Unit	value	SUS430
Density	kg/mm/m² (room temperature)	7.70	7.70
Specific electrical resistivity	10-8Ωm (room temperature)	51	57
Specific heat	kJ/kg/°C (0~100°C)	0.49	0.46
Heat conductivity	W/m/℃ (100℃)	26.6	24.2
Heat expansion coefficient	10-6/°C (room temperature to 100°C)	10.8	11
Longitudinal elastic modulus	kN/mm²	217	200

APPLI

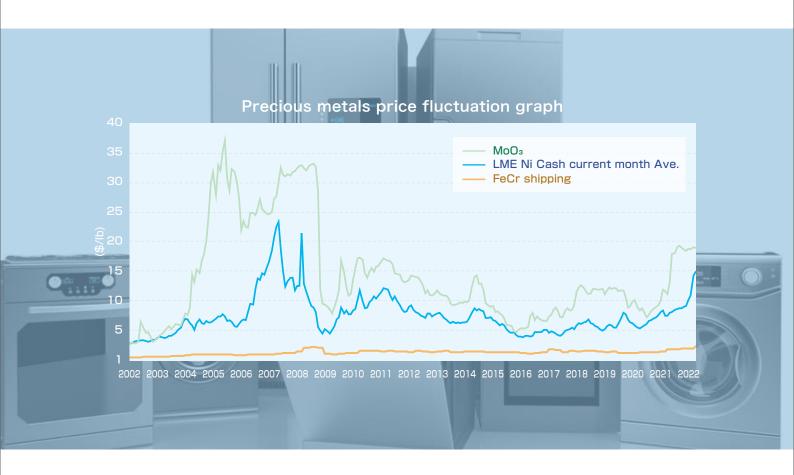
Application example

- 01. Cabinet (FW1)
- 02. Knife cutting board sterilizer (FW1)
- 03. Large kitchen bat (FW2)
- 04. Pot (FW2)
- 05. Kitchen sink (FW1)
- 06. IH rice cooker (FW1/FW2)
- 07. Grill plate (FWO)
- 08. Water tank (FW2)
- 09. Tumbler (FW2)
- 10. Washing tub (FW1)



CATION

- 11. Ornamental tubing (FW2)
- 12. Folding container (FWO)
- 13. Clamp for solar panel (FW2)
- 14. Gutter Blacket (FW2)
- 15. Crystallizing dish (FW1)
- 16. Chimney (FWO)
- 17. Elevator lining (FW1)
- 18. Vacuum packaging machine (FW1)
- 19. Bread making equipment (FW1)
- 20. Garbage storage box (FW2)



09

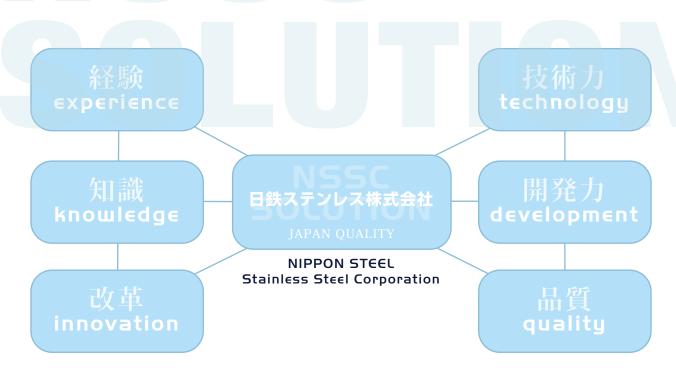
Price stability

Price trends of raw materials: chromium, nickel, molybdenum

FW series restrain the cost and have a great price stability by thorough resource saving (no nickel/molybdenum added, reduced chromium) and minimizing the impact of fluctuations of raw material price.

2010

2010 Nikkei Excellent Product Service Award/Best Award Nikkei Business Daily Award 2012



2012 The Japan Institute of Metals and Materials
Technical Development Award

2012

Monozukuri Nippon Grand Award
Prime Minister's Award

Head Office

Tekko Building 17F, 1-8-2 Marunouchi, Chiyoda-ku, Tokyo 100-0005, Japan Phone +81-3-6841-4800

Branches

Osaka Sales Office

Sumitomo Bldg. 4-5-33 Kitahama, Chuo-ku, Osaka-shi,Osaka 541-0041, Japan Phone +81-6-4706-1180

Nagoya Sales Office

Takisada Bldg.2-13-19 Nishiki, Naka-ku, Nagoya-shi, Aichi 460-0003, Japan Phone +81-52-232-2250

Niigata Sales Office

Taiju-Seimei Niigata Bldg. 1-3-10 Higashi Oodori, Chuo-ku, Niigata-shi, Niigata 950-0087, Japan Phone +81-25-246-3113

Chugoku Sales Office

Hiroshima-Teppouchou Bldg. 10-12 Teppouchou, Naka-ku, Hiroshima-shi, Hiroshima 730-0017, Japan Phone +81-82-511-5115

Kyushu Sales Office

Hakata-NS Bldg. 5-18 Tenya-machi, Hakata-ku, Fukuoka-shi, Fukuoka 812-0025, Japan Phone +81-92-273-7090

Hokuriku Marketing Branch

Kitanippon Sakurabashi Bldg. 1-18, Sakurabashi-dori, Toyama-shi, Toyama 930-0004, Japan Phone +81-76-415-0527

Overseas Offices

Bangkok Office

(NS-Thainox Auto Company Limited.)

1 MD Tower, 20th Floor, Soi Bangna-Trad 25, Bangna-Trad Road, KM.3, Bangna Nuea, Bangna, Bangkok 10260 Thailand Phone +66-2-744-0720

Shanghai Office

(NIPPON STEEL Stainless Steel (Shanghai) Company Limited)

Room No.904, UNITED PLAZA, 1468 Nanjing Road West, Shanghai 200040, China

Phone +86-21-62892928

Guangzhou Office

(NIPPON STEEL Stainless Steel (Shanghai) Company Limited Guangzhou Branch)

Room No.1404, South Tower, GT Land Plaza 2, No.8 Zhujiang Xi Road, Guangzhou 510623, China Phone +86-20-38739850

TECHNOLOGY DEVELOPMENT QUALITY

Creating the future one step ahead

NSSC FW WEB

NSSC FW

Search

Head Office Product Development Department

Phone +81-3-6841-5290